organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Rui Liu, Xiao-Bing Wang and Ling-Yi Kong*

Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, People's Republic of China

Correspondence e-mail: lykong@jlonline.com

Key indicators

Single-crystal X-ray study T = 298 K Mean σ (C–C) = 0.009 Å R factor = 0.056 wR factor = 0.192 Data-to-parameter ratio = 8.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Dammaradienyl acetate

The title compound [systematic name: 4,4,8,10,14-pentamethyl-17-(6-methylhepta-1,5-dien-2-yl)hexadecahydro-1*H*cyclopenta[*a*]phenanthren-3-yl acetate], $C_{32}H_{52}O_2$, contains a fused four-ring system. All three six-membered rings adopt chair conformations and the five-membered ring is twisted. The *A/B*, *B/C* and *C/D* ring junctions are all *trans*-fused. A chain running along the *b* axis is formed *via* C-H···O hydrogen bonds, and translation of the chain along the *a* and *c* axes generates the three-dimensional structure.

Comment

The title compound dammaradienyl acetate, (I), was originally isolated from the Indian plant *Commelina undulata*, which was shown to possess anticancer activity against lymphoid leukaemia in mice (PS 388) in the screening programme of the US National Institutes of Health (Sharma & Tandon, 1982). We have now isolated this compound from *Inula nervosa*. Here, the crystal structure of (I) is reported.

The skeleton of (I) is composed of a fused four-ring system, including three six-membered rings, A (C3-C7/C12), B (C7-C12) and C (C10–C16), and a five-membered ring, D (C15– C19). All the junctions are trans-fused, as indicated by their torsion angles (Table 1), which is similar to what is observed in 1-acetyl-24-epi-polacandrin (Simirgiotis et al., 2003). All three six-membered rings, A, B and C, adopt chair conformations, as shown by their puckering parameters (Cremer & Pople, 1975) $[q_2 = 0.039 (5), q_3 = 0.553 (5), Q = 0.554 (5) \text{ Å}, \theta = 4.4 (5) \text{ and } \varphi$ = 70 (8)° for ring A; $q_2 = 0.083$ (5), $q_3 = 0.564$ (5), Q =0.570 (5) Å, $\theta = 8.4$ (5) and $\varphi = 5(3)^{\circ}$ for ring B; $q_2 = 0.071$ (5), $q_3 = 0.585$ (5), Q = 0.589 (5) Å, $\theta = 6.9$ (5) and $\varphi = 311$ (4)° for ring C. The value for δ of 704.2° suggests that ring D is twisted about the C15–C16 bond [$\delta = 2P$ (Altona *et al.* 1968), P =352.1 (4), $\tau(M) = 44.0$ (3) for reference bond C15–C16, where P and $\tau(M)$ are the pseudorotation parameters (Rao *et al.*, 1981)]. The acetyloxyl group and the chain are equatorially

Received 7 July 2006 Accepted 21 July 2006

© 2006 International Union of Crystallography All rights reserved

Figure 1

The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

Part of the crystal structure of (I). Intermolecular $C-H \cdots O$ interactions are marked as dashed lines.

attached to rings A and D, respectively. The methyl groups C22, C23 and C24 are axially attached to rings B and C.

The hydrogen bond $C21 - H21A \cdots O2^{i}$ links the molecules of (I) into a chain running along the b axis $[C21 \cdots O2] =$ 3.432 (8) Å, H21 $A \cdots O2 = 2.57$ Å and C21-H21 $A \cdots O2 =$ 149°; symmetry code: (i) x, y - 1, z; Fig. 2].

Experimental

The dried powdered herb Inula nervosa Wall. (14.8 kg) was extracted three times with hot ethanol (501 \times 3). The extract was evaporated under reduced pressure to yield a dark-green mass. This was treated with petroleum ether, chloroform and ethyl acetate. The petroleum ether fraction was chromatographed on a silica-gel column. The compound eluted with petroleum ether-ethyl acetate (10:1) crystallized from chloroform as needles (m.p. 422 K). Spectroscopic analysis: ¹H NMR (500 MHz, CDCl₃, δ, p.p.m.): 5.13 (1 H, t sept, J = 1.4 and 7.0 Hz, H24), 4.74 (1 H, s, H21), 4.70 (1 H, s, J = 1.5 Hz, H21), 4.49 (1 H, dd, J = 5.5 and 11.3 Hz, H3), 2.04, 1.63, 1.61 (each 3 H, s, -COCH₃, H26 and H27), 0.98, 0.88, 0.87, 0.86, 0.85 (each 3 H, s), 0.83 (1 H, m, H5); ¹³C NMR (125 MHz, CDCl₃, δ, p.p.m.): 170.9 (-COCH₃), 152.7 (C20), 131.3 (C25), 124.5 (C24), 107.5 (C21), 80.9 (C3), 55.9 (C5), 50.9 (C9), 49.4 (C14), 47.8 (C17), 45.3 (C13), 40.5 (C8), 38.8 (C22), 37.9 (C4), 37.1 (C10), 35.4 (C7), 34.2 (C1), 31.4 (C15), 28.9 (C23), 27.9 (C28), 27.1 (C2), 25.7 (C26), 24.9 (C16), 23.7 (C2), 21.4 (C11), 21.3 (-COCH₃), 18.2 (C6), 17.7 (C27), 16.5 (C30), 16.3 (C19), 15.9 (C18), 15.6 (C29). Crystals of (I) suitable for X-ray analysis were obtained from a chloroform solution by slow evaporation at room temperature.

Crystal data

C ₃₂ H ₅₂ O ₂	Z = 2	
$M_r = 468.74$	$D_x = 1.085 \text{ Mg m}^{-3}$	
Monoclinic, P2 ₁	Mo $K\alpha$ radiation	
$a = 11.660 (4) \text{\AA}$	$\mu = 0.07 \text{ mm}^{-1}$	
b = 7.400 (3) Å	T = 298 (2) K	
c = 16.632 (6) Å	Prism, colourless	
$\beta = 91.654 \ (6)^{\circ}$	$0.58 \times 0.41 \times 0.19 \text{ mm}$	
V = 1434.5 (9) Å ³		

Data collection

Bruker SMART CCD area-detector diffractometer ω and ω scans Absorption correction: multi-scan (SADABS; Bruker, 2000) $T_{\min} = 0.963, T_{\max} = 0.988$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.056$ $wR(F^2) = 0.192$ S = 1.002735 reflections 307 parameters

H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.1093P)^2]$ where $P = (F_0^2 + 2F_c^2)/3$

7593 measured reflections

 $R_{\rm int} = 0.052$ $\theta_{\rm max} = 25.0^{\circ}$

2735 independent reflections

1529 reflections with $I > 2\sigma(I)$

 $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.20 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$

Table 1 Selected torsion angles (°).

C9-C10-C11-C13	-176.9(3)	C8-C7-C12-C3	174.7 (4)
C23-C10-C11-C13	65.1 (5)	C6-C7-C12-C3	-51.5 (5)
C16-C10-C11-C13	-56.1(4)	C8-C7-C12-C22	-65.8(5)

The methyl H atoms were constrained to an ideal geometry, with C-H = 0.96 Å and $U_{iso}(H) = 1.5U_{eq}(C)$, but were allowed to rotate freely about the C-C bonds. All remaining H atoms were placed in geometrically idealized positions (C-H = 0.93-0.97 Å) and constrained to ride on their parent atoms, with $U_{iso}(H) = 1.2U_{eq}(C)$. In the absence of any significant anomalous scattering, Friedel pairs were merged during the final refinement and the absolute configuration is unknown.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

The research work was supported by the Teaching and Research Award Program for Outstanding Young Teachers in Higher Education Institutions of MOE, China (to LYK).

References

Altona, C., Geise, H. J. & Romers, C. (1968). Tetrahedron, 24, 13-32.

Bruker (2000). SADABS, SAINT, SHELXTL and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.

Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.

Rao, S. T., Westhof, E. & Sundaralingam, M. (1981). Acta Cryst. A37, 421-425.

Sharma, S. C. & Tandon, J. S. (1982). Phytochemistry, 21, 2420–2421.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.

Simirgiotis, M. J., Jime'nez, C., Rodríguez, J., Giordano, O. S. & Tonn, C. E. (2003). J. Nat. Prod. 66, 1586–1592.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.