## Structure Reports

Online
ISSN 1600-5368

## Rui Liu, Xiao-Bing Wang and Ling-Yi Kong*

Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, People's Republic of China

Correspondence e-mail: lykong@jlonline.com

## Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.009 \AA$
$R$ factor $=0.056$
$w R$ factor $=0.192$
Data-to-parameter ratio $=8.9$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
## Dammaradienyl acetate

The title compound [systematic name: 4,4,8,10,14-penta-methyl-17-(6-methylhepta-1,5-dien-2-yl)hexadecahydro- 1 H cyclopenta $[a]$ phenanthren-3-yl acetate], $\mathrm{C}_{32} \mathrm{H}_{52} \mathrm{O}_{2}$, contains a fused four-ring system. All three six-membered rings adopt chair conformations and the five-membered ring is twisted. The $A / B, B / C$ and $C / D$ ring junctions are all trans-fused. A chain running along the $b$ axis is formed via $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, and translation of the chain along the $a$ and $c$ axes generates the three-dimensional structure.

## Comment

The title compound dammaradienyl acetate, (I), was originally isolated from the Indian plant Commelina undulata, which was shown to possess anticancer activity against lymphoid leukaemia in mice (PS 388) in the screening programme of the US National Institutes of Health (Sharma \& Tandon, 1982). We have now isolated this compound from Inula nervosa. Here, the crystal structure of (I) is reported.

(I)

The skeleton of (I) is composed of a fused four-ring system, including three six-membered rings, $A(\mathrm{C} 3-\mathrm{C} 7 / \mathrm{C} 12), B(\mathrm{C} 7-$ $\mathrm{C} 12)$ and $C(\mathrm{C} 10-\mathrm{C} 16)$, and a five-membered ring, $D$ (C15C19). All the junctions are trans-fused, as indicated by their torsion angles (Table 1), which is similar to what is observed in 1-acetyl-24-epi-polacandrin (Simirgiotis et al., 2003). All three six-membered rings, $A, B$ and $C$, adopt chair conformations, as shown by their puckering parameters (Cremer \& Pople, 1975) $\left[q_{2}=0.039(5), q_{3}=0.553\right.$ (5), $Q=0.554$ (5) $\AA, \theta=4.4$ (5) and $\varphi$ $=70(8)^{\circ}$ for ring $A ; q_{2}=0.083(5), q_{3}=0.564(5), Q=$ 0.570 (5) $\AA, \theta=8.4$ (5) and $\varphi=5(3)^{\circ}$ for ring $B ; q_{2}=0.071$ (5), $q_{3}=0.585$ (5), $Q=0.589$ (5) Å, $\theta=6.9$ (5) and $\varphi=311$ (4) ${ }^{\circ}$ for ring $C$. The value for $\delta$ of $704.2^{\circ}$ suggests that ring $D$ is twisted about the $\mathrm{C} 15-\mathrm{C} 16$ bond $[\delta=2 P$ (Altona et al. 1968), $P=$ $352.1(4), \tau(M)=44.0$ (3) for reference bond C15-C16, where $P$ and $\tau(M)$ are the pseudorotation parameters (Rao et al., 1981)]. The acetyloxyl group and the chain are equatorially


Figure 1
The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the $50 \%$ probability level.


Figure 2
Part of the crystal structure of (I). Intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions are marked as dashed lines.
attached to rings $A$ and $D$, respectively. The methyl groups $\mathrm{C} 22, \mathrm{C} 23$ and C24 are axially attached to rings $B$ and $C$.

The hydrogen bond $\mathrm{C} 21-\mathrm{H} 21 A \cdots \mathrm{O} 2^{\mathrm{i}}$ links the molecules of (I) into a chain running along the $b$ axis [C21 $\cdots \mathrm{O} 2=$ $3.432(8) \AA, \mathrm{H} 21 A \cdots \mathrm{O} 2=2.57 \AA$ and $\mathrm{C} 21-\mathrm{H} 21 A \cdots \mathrm{O} 2=$ $149^{\circ}$; symmetry code: (i) $x, y-1, z$; Fig. 2].

## Experimental

The dried powdered herb Inula nervosa Wall. ( 14.8 kg ) was extracted three times with hot ethanol $(501 \times 3)$. The extract was evaporated under reduced pressure to yield a dark-green mass. This was treated with petroleum ether, chloroform and ethyl acetate. The petroleum ether fraction was chromatographed on a silica-gel column. The
compound eluted with petroleum ether-ethyl acetate (10:1) crystallized from chloroform as needles (m.p. 422 K ). Spectroscopic analysis: ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, $\delta$, p.p.m.): $5.13(1 \mathrm{H}$, t sept, $J=$ 1.4 and $7.0 \mathrm{~Hz}, \mathrm{H} 24), 4.74(1 \mathrm{H}, s, \mathrm{H} 21), 4.70(1 \mathrm{H}, s, J=1.5 \mathrm{~Hz}, \mathrm{H} 21)$, $4.49(1 \mathrm{H}, d d, J=5.5$ and $11.3 \mathrm{~Hz}, \mathrm{H} 3), 2.04,1.63$, 1.61 (each $3 \mathrm{H}, s,-$ $\mathrm{COCH}_{3}, \mathrm{H} 26$ and H27), $0.98,0.88,0.87,0.86,0.85$ (each $3 \mathrm{H}, s$ ), 0.83 ( $1 \mathrm{H}, m, \mathrm{H} 5$ ); ${ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$, $\delta$, p.p.m.): 170.9 ($\left.\mathrm{COCH}_{3}\right), 152.7(\mathrm{C} 20), 131.3(\mathrm{C} 25), 124.5(\mathrm{C} 24), 107.5(\mathrm{C} 21), 80.9$ (C3), 55.9 (C5), 50.9 (C9), 49.4 (C14), 47.8 (C17), 45.3 (C13), 40.5 (C8), 38.8 (C22), 37.9 (C4), 37.1 (C10), 35.4 (C7), 34.2 (C1), 31.4 (C15), 28.9 (C23), 27.9 (C28), 27.1 (C2), 25.7 (C26), 24.9 (C16), 23.7 $(\mathrm{C} 2), 21.4(\mathrm{C} 11), 21.3\left(-\mathrm{COCH}_{3}\right), 18.2(\mathrm{C} 6), 17.7(\mathrm{C} 27), 16.5(\mathrm{C} 30)$, 16.3 (C19), 15.9 (C18), 15.6 (C29). Crystals of (I) suitable for X-ray analysis were obtained from a chloroform solution by slow evaporation at room temperature.

Crystal data
$\mathrm{C}_{32} \mathrm{H}_{52} \mathrm{O}_{2}$
$M_{r}=468.74$
Monoclinic, $P 2_{1}$
$a=11.660$ (4) $\AA$
$b=7.400(3) \AA$
$c=16.632(6) \AA$
$\beta=91.654(6)^{\circ}$
$V=1434.5(9) \AA^{3}$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.085 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=0.07 \mathrm{~mm}^{-1} \\
& T=298(2) \mathrm{K} \\
& \text { Prism, colourless } \\
& 0.58 \times 0.41 \times 0.19 \mathrm{~mm}
\end{aligned}
$$

Data collection
Bruker SMART CCD area-detector diffractometer
$\varphi$ and $\omega$ scans
Absorption correction: multi-scan (SADABS; Bruker, 2000)
$T_{\text {min }}=0.963, T_{\text {max }}=0.988$
7593 measured reflections 2735 independent reflections 1529 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.052$ $\theta_{\text {max }}=25.0^{\circ}$

## Refinement

Refinement on $F^{2}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.056$
$w R\left(F^{2}\right)=0.192$
$S=1.00$
2735 reflections
307 parameters

Table 1
Selected torsion angles $\left({ }^{\circ}\right)$.

| $\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 13$ | $-176.9(3)$ | $\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 12-\mathrm{C} 3$ | $174.7(4)$ |
| :--- | ---: | :--- | ---: |
| $\mathrm{C} 23-\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 13$ | $65.1(5)$ | $\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 12-\mathrm{C} 3$ | $-51.5(5)$ |
| $\mathrm{C} 16-\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 13$ | $-56.1(4)$ | $\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 12-\mathrm{C} 22$ | $-65.8(5)$ |

The methyl H atoms were constrained to an ideal geometry, with $\mathrm{C}-\mathrm{H}=0.96 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$, but were allowed to rotate freely about the $\mathrm{C}-\mathrm{C}$ bonds. All remaining H atoms were placed in geometrically idealized positions $(\mathrm{C}-\mathrm{H}=0.93-0.97 \AA)$ and constrained to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. In the absence of any significant anomalous scattering, Friedel pairs were merged during the final refinement and the absolute configuration is unknown.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

## organic papers

The research work was supported by the Teaching and Research Award Program for Outstanding Young Teachers in Higher Education Institutions of MOE, China (to LYK).

## References

Altona, C., Geise, H. J. \& Romers, C. (1968). Tetrahedron, 24, 13-32.

Bruker (2000). SADABS, SAINT, SHELXTL and SMART. Bruker AXS Inc., Madison, Wisconsin, USA
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Rao, S. T., Westhof, E. \& Sundaralingam, M. (1981). Acta Cryst. A37, 421-425.
Sharma, S. C. \& Tandon, J. S. (1982). Phytochemistry, 21, 2420-2421.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Simirgiotis, M. J., Jime'nez, C., Rodríguez, J., Giordano, O. S. \& Tonn, C. E. (2003). J. Nat. Prod. 66, 1586-1592.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.


[^0]:    (C) 2006 International Union of Crystallography All rights reserved

